We have F = kx or ma = kx where m and k are constants. Therefore, if x is halved, a must be halved too.
Answer:
the propagation velocity of the wave is 274.2 m/s
Explanation:
Given;
length of the string, L = 1.5 m
mass of the string, m = 0.002 kg
Tension of the string, T = 100 N
wavelength, λ = 1.5 m
The propagation velocity of the wave is calculated as;

Therefore, the propagation velocity of the wave is 274.2 m/s
If the machine's mechanical advantage is 4.5, that means that
Output force = (4.5) x (Input force) .
We know the input force, and we need to find the output force. Rather than wander around the room looking at the floor while our hair smolders, let's try putting the numbers we know into the equation I wrote up there. OK ?
Output force = (4.5) x (Input force)
Output force = (4.5) x (800 N)
Now dooda multiplication:
<em>Output force = 3,600 N</em> .
That's exactly what the question asked for. So we're done !
Between centre of curvature and principal focus.