D. They are heterotrophs that digest food internally.
Answer:
B) the change in momentum.
Explanation:
The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (
):
(1)
We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

So, (1) becomes

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time:
. If we substitute into the previous equation, we find

And the quantity
is equivalent to the change in momentum,
.
Answer:
Kinetic Energy
Explanation:
The potential energy is being converted into kinetic energy. The hitter has struck the ball transferring the kinetic energy from the swinging bat to the ball.
We calculate the coordinates at t₁ = 9 min and t₂ = 10 min, since the 10th minute is between t₁ and t₂.
As it leaves from rest, it means that the initial speed is zero
t₁=9 min=540 s
t₂=10 min=600 s
x₁=at₁²/2=8*540²/2=4*291600=1166400 m
x₂=at₂²/2=8*600²/2=4*360000=1440000 m
Δx=x₂-x₁=1440000-1166400=273600 m represents the distance traveled by the car in the 10th minute of travel
Answer:
It corresponds to 1mm-10 mm range.
Explanation:
- Electromagnetic waves (such as the millimeter-wave radiation) travel at the speed of light, which is 3*10⁸ m/s in free space.
- As in any wave, there exists a fixed relationship between speed, frequency and wavelength, as follows:

- Replacing v= c=3*10⁸ m/s, and the extreme values of f (which are givens), in (1) and solving for λ, we can get the free-space wavelengths that correspond to the 30-300 GHz range, as follows:

