An exothermic reaction is a type of reaction that dissipates heat as the reaction proceeds. This would mean that in a closed system, when a reaction proceeds and is endothermic, the temperature of the solution or the system would increase so as to maintain the equilibrium with the whole system.
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
Answer:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
Answer:
We can use heat = mcΔT to determine the amount of heat, but first we need to determine ΔT. Because the final temperature of the water is 55°C and the initial temperature is 20.0°C, ΔT is as follows:
ΔT = Tfinal − Tinitial = 55.0°C − 20.0°C = 35.0°C
given the specific heat of water as 1 cal/g·°C. Substitute the known values into heat = mcΔT and solve for amount of heat:
= heat=(75.0 g)(1 cal/ g· °C )(35.0°C) =
= 75x1x35=2625 cal
Let x be the volume of fluid removed and the volume of pure antifreeze that is added. The concentration of antifreeze in the fluid is 0.3, the concentration in pure antifreeze is 1 and that in the final solution is 0.4 The volume of the final solution is 10.
(10 - x)(0.3) + x = 10(0.4)
0.3 + 0.7x = 0.4
x = 1/7 quarts
The volume that should be drained is 1/7 quarts