The water will started boiling and the pasta is going to start like melting so it can get a soft and smooth texture so you can eat it.
The greatest amount of AB would be produced if the equilibrium constant of the reaction is equal to
. Hence, option D is correct.
<h3>What is an equilibrium constant?</h3>
A number that expresses the relationship between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a given temperature.
The equilibrium constant expression is a mathematical relationship that shows how the concentrations of the products vary with the concentration of the reactants.
If the value of K is greater than 1, the products in the reaction are favoured. If the value of K is less than 1, the reactants in the reaction are favoured.
Hence, option D is correct.
Learn more about the equilibrium constant here:
brainly.com/question/10038290
#SPJ1
Answer:
Wouldn't rust because zinc will lose electrons more readily than iron and will therefore oxidize first.
Explanation:
This process whereby rusting of steel is prevented by coating the steel with a layer of zinc is known as galvanization.
Now, in this process, the steel object will be coated in a thin layer of zinc. This coating will prevent oxygen and water from reaching the underneath metal since the zinc will also act as a sacrificial metal.
Now, Zinc is used because it has a lower reduction potential than iron and thus it will get easily more oxidized than iron. Which means the zinc will lose electrons more readily than iron.
Also, since zinc has a lower reduction potential, it is therefore the more active metal. Thus, even if the zinc coating is scratched and the steel is exposed to moist air, the zinc will still get to oxidize before the iron.
Answer:
a) Pabs = 48960 KPa
b) T = 433.332 °C
Explanation:
∴ d = 1000 Kg/m³
∴ g = 9.8 m/s²
∴ h = 5000 m
∴ P gauge = - 40 KPa * ( 1000 Pa / KPa ) = - 40000 Pa; Pa≡Kg/m*s²
⇒ Pabs = - 40000 Kg/ms² + ( 1000 Kg/m³ * 9.8 m/s² * 5000 m )
⇒ Pabs = 48960000 Pa = 48960 KPa
a) at that height and pressure, we find the temperature at which the water boils by means of an almost-exponential graph which has the following equation:
P(T) = 0.61094 exp ( 17.625*T / ( T + 243.04 ))......P (KPa) ∧ T (°C)....from literature
∴ P = 48960 KPa
⇒ ( 48960 KPa / 0.61094 ) = exp ( 17.625T / (T+ 243.04))
⇒ 80138.803 = exp ( 17.625T / ( T + 243.04))
⇒ Ln ( 80138.803) = 17.625T / ( T + 243.04))
⇒ 11.292 * ( T + 243.04 ) = 17.625T
⇒ 11.292T + 2744.289 = 17.625T
⇒ 2744.289 = 17.625T - 11.292T
⇒ 2744.289 = 6.333T
⇒ T = 433.332 °C
When the balanced equation for this reaction is:
2Fe + 3H2O → Fe2O3 + 3H2
and according to the vapour pressure formula:
PV= nRT
when we have P is the vapor pressure of H2O= 0.121 atm
and V is the volume of H2O = 4.5 L
and T in Kelvin = 52.5 +273 = 325.5 K
R= 0.08205 atm-L/g mol-K
So we can get n H2O
So, by substitution:
n H2O = PV/RT
= (0.121*4.5)/(0.08205 * 325.5) = 0.02038 gmol
n Fe2O3 = 0.02038 * (1Fe2O3/ 3H2O) = 0.00679 gmol
Note: we get (1FeO3/3H2O) ratio from the balanced equation.
we can get the Mass of Fe2O3 from this formula:
Mass = number of moles * molecular weight
when we have a molecular weight of Fe2O3 = 159.7
= 0.00679 * 159.7 = 1.084 g
∴ 1.084 gm of Fe2O3 will produced