Answer
Given,
Magnetic field, B = 0.245 T
KE of the electron = 2.90 x 10⁻¹⁹ J
Speed of electron = ?



v = 7.97 x 10⁵ m/s
radius of the circular path
so,



r = 1.85 x 10⁻⁵ m
The acceleration is 
Explanation:
We can answer this question by using Newton's second law, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 25 kg is the mass of the rider+bicycle
F = 400 N is the force
Solving for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
The answer to your question is distance between these electrons
= 1.386 x 10⁻¹⁴ m
Explanation:
Data
Force = F = 1.2 N
distance = d = ?
charge = q₁ = q₂ = 1.602 x 10⁻¹⁹ C
K = 8.987 x 10⁹ Nm²/C²
Formula
-To solve this problem use the Coulomb's equation
F = kq₁q₂ / r²
-Solve for r²
r² = kq₁q₂ / F
-Substitution
r² = (8.987 x 10⁹)(1.602 x 10⁻¹⁹)(1.602 x 10⁻¹⁹) / 1.2
- Simplification
r² = 2.306 x 10⁻²⁸ / 1.2
r² = 1.922 x 10⁻²⁸
-Result
r = 1.386 x 10⁻¹⁴ m
Answer:
D. 48.985 N
Explanation:
Newton's second law states that:

which means that the net force acting on an object is equal to the product between the object's mass and its acceleration.
The equation of the forces for the briefcase in the elevator therefore is given by:

where
N is the normal reaction exerted on the briefcase
(mg) is the weight of the briefcase, with
m = 4.5 kg being its mass
g = 9.8 m/s^2 is the acceleration of gravity
a = 1.10 m/s^2 is the acceleration
Here we chose upward as positive direction.
Solving for N, we find the normal force:

So the closest answer is
D. 48.985 N
Answer:
T = 98 N
Explanation:
The gravity of the earth is known to be 9.8 m/s²
Data:
- m = 10 kg
- g = 9.8 m/s²
- T = ?
Use formula:
Replace and solve:
The tension in the rope is <u>98 Newtons.</u>
Greetings.