Answer:
1400 units of momentum.
Explanation:
Using the formula p=mv. We can get the momentum using 70*20 =1400 units of momentum
Construct a vector diagram. It will be a right-angled triangle. One vector (the hypotenuse) represents the heading of the boat, one represents the current and one represents the resultant speed of the boat, which I'll call x. Their magnitudes are 20, 3 and x. Let the required angle = theta. We have:
<span>theta = arcsin(3/20) = approx. 8.63° </span>
<span>The boat should head against the current in a direction approx. 8.63° to the line connecting the dock with the point opposite, or approx. 81.37° to the shore line. </span>
<span>x = sqrt(20^2 - 3^2) </span>
<span>= sqrt(400 - 9) </span>
<span>= sqrt 391 </span>
<span>The boat's crossing time = </span>
<span>0.5 km/(sqrt 391 km/hr) </span>
<span>= (0.5/sqrt 391) hr </span>
<span>= approx. 0.025 hr </span>
<span>= approx. 91 seconds</span>
The total quantity of electrons that have flowed through a circuit is a
quantity of charge, measured in Coulombs, or in Ampere-seconds.
The <em><u>rate</u></em> of flow of electrons, or more accurately the rate of flow of
the charge on them, is electrical current. Its unit is the Ampere.
1 Ampere is 1 Coulomb of charge per second.
Answer:
a) 4.31 m/s²
b) 215.5 m
Explanation:
a) According to Newton's first law of motion
The net force applied to particular mass produced acceleration, a, according to
F = ma
F = 140 N
m = 32.5 kg
a = ?
140 = 32.5 × a
a = 140/32.5 = 4.31 m/s²
b) Using the equations of motion, we can obtain the distance travelled by the object in t = 10 s
u = initial velocity of the probe = 0 m/s (since it was initially at rest)
a = 4.31 m/s²
t = 10 s
s = distance travelled = ?
s = ut + at²/2
s = 0 + (4.31×10²)/2 = 215.5 m
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .