Answer:
oxygen and hydrogen
Explanation:
the alcohol group is known as the -OH group, which has oxygen bonded to a hydrogen
Potassium chloride reacts with ammonium nitrate to give ammonium chloride and potassium nitrate.
This is a type of double displacement reaction. The balanced chemical equation can be represented as,

Total ionic equation for this reaction will be,

There is no apparent reaction as this reaction is not accompanied by the formation of a gas or a solid precipitate. We cannot observe any visual reaction as there is not net reaction taking place. All the ions remain as spectator ions.
I can't find the c orrect ratio in the selection. The formula for beryl is Be3Al2(SiO3)6 so it should be 3:2:6.
Now that we have a background in the Lewis electron dot structure we can use it to locate the the valence electrons of the center atom. The valence-shell electron-pair repulsion (VSEPR) theory states that electron pairs repel each other whether or not they are in bond pairs or in lone pairs. Thus, electron pairs will spread themselves as far from each other as possible to minimize repulsion. VSEPR focuses not only on electron pairs, but it also focus on electron groups as a whole. An electron group can be an electron pair, a lone pair, a single unpaired electron, a double bond or a triple bond on the center atom. Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule.
The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction. Thus, the molecule's shape reflects its equilibrium state in which it has the lowest possible energy in the system. Although VSEPR theory predicts the distribution of the electrons, we have to take in consideration of the actual determinant of the molecular shape. We separate this into two categories, the electron-group geometry and the molecular geometry.