Ionic bonds involve a cation and an anion. The bond is formed when an atom, typically a metal, loses an electron or electrons, and becomes a positive ion, or cation. Another atom, typically a non-metal, is able to acquire the electron(s) to become a negative ion, or anion.
One example of an ionic bond is the formation of sodium fluoride, NaF, from a sodium atom and a fluorine atom. In this reaction, the sodium atom loses its single valence electron to the fluorine atom, which has just enough space to accept it. The ions produced are oppositely charged and are attracted to one another due to electrostatic forces.
Explanation:
Here's an oxidation chart to help
..................
6.4 * 6.02 * 10^23 = 3.8528*10^24 atoms
Don't let the fact that it's vanadium throw you off, avagadros constant stays the same for all elements
<span>ATP,O2 and NADPH are the </span>products<span>. H2O,NADP,ADP and Pi are the reactants. acts as an electron carrier between the cytochrome b6f and </span>photosystem 1 (PS1) complexes in the photosynthetic electron-transfer chain.
Photosystem II<span> (or water-plastoquinone oxidoreductase) is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria.</span>