The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.
Location ' x ' is √(2² + 3²) = √13 m from the charge.
Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.
The magnitude of the E-field is the same at both locations.
The direction is also the same at both locations ... it points toward the origin.
Answer:
Explanation:
Given

mass of core
Average specific heat 
And rate of increase of temperature =
Now
P=

Thus ![\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7DT%7D%7B%5Cmathrm%7Bd%7D%20t%7D%3D%5Btex%5D%5Cfrac%7B1.60%5Ctimes%2010%5E5%5Ctimes%200.3349%7D%7B150%5Ctimes%2010%5E6%7D)

Answer:
the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Explanation:
Given;
height of the cliff, h = 210 m
initial horizontal velocity of the cannonball, Ux = 50 m/s
initial vertical velocity of the cannonball, Uy = 0
The time for the cannonball to reach the ground is calculated as;
The horizontal distance covered by the cannonball before it hits the ground is calculated as;

Therefore, the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593