Answer:
Answer: 1.095 * 10^22 atoms of P.
Explanation:
Answer:
dear jesus i need glasses
Explanation:
<u>Answer:</u> The uncertainty in the velocity of oxygen molecule is 
<u>Explanation:</u>
The diameter of the molecule will be equal to the uncertainty in position.
The equation representing Heisenberg's uncertainty principle follows:

where,
= uncertainty in position = d = 
= uncertainty in momentum = 
m = mass of oxygen molecule = 
h = Planck's constant = 
Putting values in above equation, we get:

Hence, the uncertainty in the velocity of oxygen molecule is 
Answer:
The volume of the balloon will be 5.11L
Explanation:
An excersise to solve with the Ideal Gases Law
First of all, let's convert the pressure in mmHg to atm
1 atm = 760 mmHg
760 mmHg ___ 1 atm
755.4 mmHg ____ (755.4 / 760) = 0.993 atm
922.3 mmHg ____ ( 922.3 / 760) = 1.214 atm
T° in K = 273 + °C
28.5 °C +273 = 301.5K
26.35°C + 273= 299.35K
P . V = n . R .T
First situation: 0.993atm . 6.25L = n . 0.082 . 301.5K
(0.993atm . 6.25L) / 0.082 . 301.5 = n
0.251 moles = n
Second situation:
1.214 atm . V = 0.251 moles . 0.082 . 301.5K
V = (0.251 moles . 0.082 . 301.5K) / 1.214 atm
V = 5.11L
<u>Answer:</u> The final volume of the gas comes out to be 4 L.
<u>Explanation:</u>
To calculate the volume with changing pressure, we use the equation given by Boyle's law.
This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
Mathematically,
(At constant temperature and number of moles)
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the gas will be 4 L.