Yes, because the net ionic is equation will yield BaCO3 as a precipitate because it is insoluble in water
Answer:
Ag 0 is the reducing agent.
Explanation:
Reducing -> gaining electrons
Oxidizing -> losing electrons
Ag lost electrons (became more positive) since it went from a 0 charge to a +1 charge. Therefore it was oxidized. Ag+ is the oxidized product. Reactants that create an oxidized product are called reducing agents. This would make Ag 0 the reducing agent in this reaction.
<span>Answer:
</span><span>
</span><span>
</span><span>Li⁺ (aq) + OH⁻ (aq) + H⁺ (aq) + Cl⁻(aq) → Li⁺ (aq) + Cl⁻ (aq) + H₂O(l)</span><span />
<span>Explanation:
</span>
<span>1) Combine the cation Li⁺ (aq) with the anion Cl- (aq) to form LiCl(s).
</span>
<span>LiCl is a solid soluble substance, a typical ionic compound. So, it will reamain as separate ions in the product side: Li⁺ + CL⁻</span>
<span>2) Combine the anion OH⁻ with the cation H⁺ to form H₂O(l).
</span>
<span>Since, the ionization of H₂O is low, it will remain as liquid in the product side: H₂O(l)</span>
<span>3) Finally, you can wirte the total ionic equation:
</span>
Li⁺ (aq) + OH⁻ (aq) + H⁺ (aq) + Cl⁻(aq) → Li⁺ (aq) + Cl⁻ (aq) + H₂O(l)
Yes it is for example look at Iodine and Tellurium.
Hope this helps :).