It detects ionizing radiation<span> such as alpha particles, beta particles and gamma </span>rays<span>using the ionization effect produced in a </span>Geiger<span>–Müller tube; which gives its name to the instrument.</span>
Answer:
The structures are attached in file.
Hydrogen bonding and intermolecular forces is the reason for ranks allotted.
Explanation:
In determining Lewis structure, we calculate the overall number of valence electrons available for bonding. Making carbon (the least electronegative atom) the central atom in the structure, we allocate valence electrons until each atom has achieved stability.
In order of decreasing affinity to water molecules:

This is due to the fact that the
will accept protons more readily than the bicarbonate ion,
. Carbonic acid,
will not accept any more protons, hence it is the least attractive to water molecule, even though soluble.
Answer:

Explanation:
1. Moles of CCl₄

2. Molar mass of CCl₄
MM = 1 × 12.01 + 4 × 35.5 = 12.01 + 142 = 154.0 g/mol
3. Mass of CCl₄

4. Volume of CCl₄

Answer:
The answer is 5. Compound
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol