Answer:
Molar mass and Mass
Explanation:
The relationship between mass and number of moles is given as;
Number of moles = Mass / Molar mass
Mass = 1.6 g
Molar mass of HCl = ( 1 + 35.5 ) = 36.5 g/mol
Number of moles = 1.6 g / 36.5 g/mol
Number of moles = 0.0438 mol
Answer:
the atomic number decreased in 2, from 100 to 100 - 2 = 98. 3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253. 4) The item that completes the given alpha decay reaction is: ₉₈²⁵³ Cf.
Explanation:
Answer:
Assign oxidation numbers to all atoms in the equation.
Compare oxidation numbers from the reactant side to the product side of the equation.
The element oxidized is the one whose oxidation number increased.
Explanation:
Answer:
% weight of nickle = 24 %
Explanation:
molar mass of Nickel Sulfamate (Ni(SO₃NH₂)₂) = 250.87 g/mol
Solution
1st we write down the molar mass of Ni
molar mass of Ni = 59 g/mol
now we write down the number of moles of Ni in (Ni(SO₃NH₂)₂)
number of moles of Ni = 1 mol
Now we calculate the mass of nickle present in (Ni(SO₃NH₂)₂)
<em> mass = moles × molar mass</em>
mass = 1 mol × 59 g/mol
mass = 59 g
now we calculate the % weight of nickle in (Ni(SO₃NH₂)₂)
<em> % weight = (weight of element ÷ total weight) × 100</em>
% weight of nickle = (59 ÷ 250.87) × 100
% weight of nickle = 0.24 × 100
% weight of nickle = 24 %
Answer:
[Kr] 4d10 5s2 5p4
Explanation:
The Symbol I represents Iodine. It has atomic number of 53. The full electronic configuration is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p5
However the question requested for the configuration of I+.
I+ is a cation and it simply refers to an iodine atom that has lost a single electron. The electronic configuration of I+ is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4
Using Noble gas shorthand representation, we have;
[Kr] 4d10 5s2 5p4