Then it is 0. Hope that helps
The momentum of an object varies directly with the speed of the object. Two objects of different mass are moving at the same speed; the more massive object will have the greatest momentum. A less massive object can never have more momentum than a more massive object.
Answer:
Because of the knowledge of <u>relative size</u>, it will be assumed that the smaller jetliner is farther away.
Explanation:
According to the theory of relative size, the distance that an object has to the viewing individual affects the perception of the individual regarding the size of the object.
As stated in this case, one of the jetliners is farther away from the other. Therefore, even if the jets are of equal size, the one that is at a greater distance is perceived to be smaller as it is at a greater viewing range. The one that is nearer to the individual seems bigger in comparison to the one farther away due to a closer viewing range.
Therefore, the jet that is nearer appears larger.
To know more about relative size, refer to:
brainly.com/question/19998265
#SPJ4
Mainly looking at scans ansd the levels of hormons and chemicals when we use or brain for example when we use the frontal lobe diffren thsades will appear. our stress levels as well. how we react to things problems situations or questions.
Answer:
As the wavelength of an electromagnetic wave _decrease__ the frequency of the wave _increase_______.
Explanation:
What is the relationship between frequency and wavelength?
Wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.
That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave. The equation that relates wavelength and frequency is:
V= fλ
where v= velocity
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ
For electromagnetic radiation, the speed is equal to the speed of light, c, and the equation becomes:
C= fλ
where c= Speed of light
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ