1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
15

Are bases chemically the same as acids true or false

Physics
1 answer:
Inessa [10]3 years ago
6 0

Answer:

True

Explanation:

True\

I'm not sure but i think it is true la

You might be interested in
A 0.450 kg soccer ball has a kinetic energy of 119 J.
Anastaziya [24]

Answer:

V is approximately = 23m/s

Explanation:

Kinetic energy = ½ mv²

Where m= mass = 0.450kg

V= velocity =?

K. E = 119J

Therefore

K. E = ½ mv²

Input values given

119= ½ × 0.450 × v²

Multiply both sides by 2

119 ×2  = 2 × 1/2 × 0.450 × v²

238= 0.450v²

Divide both sides by 0.450

238/0.450 = 0.450v²/0.450

v² = 528.89

Square root both sides

Sq rt v² = sq rt 528.89

V = 22.998m/s

V is approximately = 23m/s

I hope this was helpful, please rate as brainliest

8 0
3 years ago
The diagram shows forces acting on a boat.
Greeley [361]
A

I hope this helps!!:)
7 0
3 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
2 years ago
PLEASE HELP!!!! I’ll give brainliest!
Jet001 [13]
Ok well I know measure of long leg is 30 degrees and short leg is 60 degrees
3 0
3 years ago
What is solar energy?
Flura [38]
I think it's D because sunlight is a solar system
3 0
3 years ago
Other questions:
  • How does kinetic energy affect the stopping distance of a small vehicle compared to a large vehicle?
    13·1 answer
  • What are the smallest parts that make up matter?
    15·1 answer
  • What happens to the frequency of a wave if its energy increases?
    14·2 answers
  • Two buckets of mass m1 = 18.7 kg and m2 = 13.9 kg are attached to the ends of a massless rope, which passes over a pulley with a
    9·1 answer
  • Why do scientists ask questions?
    14·2 answers
  • ou are pushing a 20-kg box along a horizontal floor. Friction acts on the box. When you apply a horizontal force of magnitude 48
    6·2 answers
  • A falcon is hovering above the ground, then suddenly pulls in its wings and begins to fall toward the ground. Air resistance is
    5·1 answer
  • ASAP!! Please help me out here ​
    14·1 answer
  • PLEASE HELP!!<br> What is osteoporosis? What are the symptoms and treatments?
    5·2 answers
  • I love u whoosever seeing my question​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!