Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
During the process of polymerization, monomers combine by sharing electrons. This process forms a polymer, which is made of repeating subunits. The resulting material is used in a variety of ways.
Hope this helps!
~CoCo
The planets speed as they orbit the sun
If the concentration of acetyl chloride is increased ten times the rate of reaction is increased ten times.
The conversion of acetyl chloride to methyl acetate is a substitution reaction. Recall that a substitution reaction is one in which a moiety in a molecule is replaced by another.
In this reaction, the CH3O- ion replaces the chloride ion. In the first step, the CH3O- ion attacks the substrate in a slow step. This creates a tetrahedral intermediate. Loss of the chloride ion yields the methyl acetate product.
The rate determining step is the formation of the tetrahedral intermediate. Since the reaction is first order in the acetyl chloride, if its concentration is increased ten times the rate of reaction is increased ten times.
Learn more: brainly.com/question/5624100
Oxygen : 367*0.888=325.896
Hydrogen : 367 - 367*0.888 = 41.104g