The total pressure is given by:
P = ∑xiPi
P = 1/2 x 81 + 1/2 x 45
P = 63 kPa
Answer:
Four substitution products are obtained. The carbocation that forms can react with either nucleophile (H2O or CH3OH) from either the top or bottom side of the molecule
Explanation:
An SN1 reaction usually involves the formation of a carbocation in the slow rate determining step. This carbocation is now attacked by a nucleophile in a subsequent fast step to give the desired product.
However, the product is obtained as a racemic mixture because the nucleophile may attack from the top or bottom of the carbocation hence both attacks are equally probable.
The attacking nucleophile in this case may be water or CH3OH
Answer:
What datatable? Picture please!
Explanation:
The reaction between NaOH and H₂SO₄ is as follows;
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of base to acid is 2:1
NaOH is a strong acid and H₂SO₄ is a strong acid, therefore complete ionization into their respective ions takes place.
number of acid moles reacted - 0.112 M / 1000 mL/L x 39.1 mL = 0.0044 mol
the number of base moles required for neutralisation = 0.0044 x 2 = 0.0088 mol
Number of NaOH moles in 25.0 mL - 0.0088 mol
Therefore in 1000 mL - 0.0088 mol/ 25.0 mL x 1000 mL/L = 0.352 mol/L
Therefore molarity of NaOH - 0.352 M
1. 2Al(s)+6HCl(aq)⇒2AlCl₃(aq)+3H₂(g)
2. 2AgNO₃ (aq) + Cu (s)⇒Cu(NO₃)₂ (aq) + 2Ag (s)
3. 2C₃H₈O(l) + 9O₂(g) ⇒ 6CO₂(g) + 8H₂O(g)
<h3>Further explanation</h3>
There are several reactions that can occur in a chemical reaction: single replacement, double replacement, synthesis, decomposition or combustion, etc.
1.Al(s)+HCl(aq)⇒AlCl₃(aq)+H₂(g)
type : single replacement
balance :
2Al(s)+6HCl(aq)⇒2AlCl₃(aq)+3H₂(g)
2. AgNO₃ (aq) + Cu (s) ⇒ Cu(NO₃)₂ (aq) + Ag (s)
type : single replacement
balance :
2AgNO₃ (aq) + Cu (s)⇒Cu(NO₃)₂ (aq) + 2Ag (s)
3. C₃H₈O + O₂ ⇒ CO₂ + H₂O
type : combustion of alcohol
balance :
2C₃H₈O(l) + 9O₂(g) ⇒ 6CO₂(g) + 8H₂O(g)