Answer:The speed if hailstone dependly largely on its size. A hailstone with a diameter of 0.39 inches,falls wit a speed of 20mph while a hailstone with 3.1 inches in diameter falls at a speed of 110mph.
No speed does not depend on the distance that the hailstone falls.
Explanation: There are other factors that affect the speed of the falling hailstone apart from its size.They are:
1. Friction between the air and the hailstone
2. Wind condition( windy or moist air)
3. The rate at which it melts falling.
Answer:
The work done by the gravel to stop the truck is 520.44 kJ
Explanation:
<u>Step 1</u>: Data given
Mass of the truck = 3047.8 kg
The ramp has an angle of 9.5 °
Velocity of the truck = 20.68 m/s
distance = 26.6 meters
<u>Step 2:</u> Calculate initial kinetic energy
sin 9.5° = 0.165
h = ℓ*sin 9.5° = 26.6*0.165= 4.39 m
Ek = 1/2m*Vo² = 1/2*3047.8*20.68² = 651714.7 Joule = 651.7 kJ = initial kinetic energy
<u>Step 3: </u>Calculate potential energy
Epot = U = m*g*h = 3047.8*9.81*4.39 = 131256.25 Joule = 131.26 kJ
<u>Step 4:</u> What work is done by the truck on the gravel?
Frictional energy Ef = 651.7 kJ - 131.26 kJ = 520.44 kJ
Answer:
protein
Explanation:
protein is a very large complex macro-molecule that requires amino acids
Compared to the pucks given, the pair of pucks will rotate at the same rate.
Answer: Option A
<u>Explanation:</u>
The law of conservation of the angular momentum expresses that when no outer torque follows upon an article, no difference in angular momentum will happen. At the point when an item is turning in a shut framework and no outside torques are applied to it, it will have no change in angular momentum.
The conservation of the angular momentum clarifies the angular quickening of an ice skater as she brings her arms and legs near the vertical rotate of revolution. In the event, that the net torque is zero, at that point angular momentum is steady or saved.
By twice the mass yet keeping the speeds unaltered, also twice the angular momentum's to the two-puck framework. Be that as it may, we likewise double the moment of inertia. Since
, the turning rate of the two-puck framework must stay unaltered.
Hubble noticed that the galaxies were moving away from us, which meant the universe was expanding.
This is why constellations change over time. In some years, the Big Dipper won't actually look like a dipper anymore.