Answer: hello some part of your question is missing attached below is the missing detail
answer :
<em>w</em>f = M( v cos∅ )D / I
Explanation:
The Angular speed <em>wf </em>of the system after collision in terms of the system parameters and I can be expressed as
considering angular momentum conservation
Li = Lf
M( v cos∅ ) D = ( ML^2 / 3 + mD^2 ) <em>w</em>f
where ; ( ML^2 / 3 + mD^2 ) = I ( Inertia )
In terms of system parameters and I
<em>w</em>f = M( v cos∅ )D / I
Answer:
look at my Explanation
Explanation:
If the Maggie's mass is 100.0 kg and the truck is 1810 kg, calculate the magnitude of the net (unbalanced) force that can cause the acceleration.
<span>93.3°C
A temperature in Fahrenheit (°F) can be converted to Celsius (°C), using the formula
[°C] = ([°F] − 32) × 5⁄9. Here we have to convert a temperature of 200°F in to Celsius. Thus Subtract 32 from Fahrenheit and multiply by 5 then divide by 9 .
That is (200°F - 32) × 5/9=168 × 5/9
=840/9
=93.333333333°C
= 93.3°C</span>
Amplitude modulation is a modulation technique used in electronic communication, most commonly for transmitting information via a radio carrier wave. In amplitude modulation, the signal strength of the carrier wave is varied in proportion to that of the message signal being transmitted. The message signal is, for example, a function of the sound to be reproduced by a loudspeaker, or the light intensity of pixels of a television screen. This technique contrasts with frequency modulation, in which the frequency of the carrier signal is varied, and phase modulation, in which its phase is varied.
AM was the earliest modulation method used to transmit voice by radio. It was developed during the first quarter of the 20th century beginning with Landell de Moura and Reginald Fessenden's radiotelephone experiments. It remains in use today in many forms of communication; for example it is used in portable two-way radios, VHF aircraft radio, citizens band radio, and in computer modems in the form of QAM. AM is often used to refer to mediumwave AM radio broadcasting.