First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:
2as = v² - u²
Because the final velocity v is 0 in such cases
s = -u²/2a; because both u and a are downwards, the negative sign cancels
s = 14.5² / 2*9.81
s = 10.72 meters
Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m
We will use the formula
s = ut + 0.5at²
to find the time taken with the initial velocity u = 0.
55.72 = 0.5 * 9.81 * t²
t = 3.37 seconds
Answer:
t₂ = 3.89 s
Explanation:
given,
speed of car = 23 m/s
speed of motorcycle = 23 m/s
after time of 4 s distance between them is equal to = 53 m
motorcycle accelerates at = 7 m/s
time taken to catch up with car = ?
let t₂ be the time in which motorcycle catches car.
distance traveled by car in t₂ s
d = 23 t₂ + 53
distance traveled by motorcycle
using equation of motion


now, equating both the distances


t₂ = 3.89 s
time taken by the motorcycle to catch the car is equal to 3.89 s
Answer:
I = 215.76 A
Explanation:
The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.
Fm = u_o*I^2*L/2*π*d
where I is the current in each rod, d = 0.0082 m is the distance 27rId
between each, L = 0.85 m is the length of each rod.
Fm = 4π*10^-7*I^2*1.1/2*π*0.0083
The mass of each rod is m = 0.0276 kg
F_m = mg
4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8
I = 215.76 A
note:
mathematical calculation maybe wrong or having little bit error but the method is perfectly fine