Answer: a) 557.3kN b) 543kN
Explanation:
Buoyant force = weight of water displaced.
Formula for buoyant force = mg×(density of fluid/density of object)
Density of fluid = density of sea water = 1025kg/m³
Mass of the chamber(m) = 54300kg
g = acceleration due to gravity = 10m/s²
Density of chamber = mass/volume
Where volume of sphere = 4/3Πr³
radius = 4.70/2 = 2.35m
Volume = 4/3×Π(2.35)³
Volume = 54.37m³
Density of chamber = 54300/54.37
= 998.7kg/m³
Substituting the values into the formula for buoyant force
Buoyant force= 54300×10×{1025/998.7}
= 557299N
= 557.3kN
b) Tension in the cable = mass of cable × acceleration due to gravity
= 54300×10 = 543000N or 543kN.
Answer:
Centre of mass of any body is a point where all mass of a body is supposed to be concentrated
it lies in geometrical centre....
Answer:
true
Explanation:
Energy stored in the nuclei of atoms can be used to generate electricity. ... Most of the energy of food is converted to heat.
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²