P1T2 = P2T1
(3.8)(36)=25P2
136.8=25P2
136.8/25=P2
P2=5.472atm
Answer:
CH₂ ; 67.1 %
Explanation:
To determine the empirical formula we need to find what the mole ratio is in whole numbers of the atoms in the compound. To do that we will first need the atomic weights of C and H and then perform our calculation
Assume 100 grams of the compound.
# mol C = 85.7 g / 12.01 g/mol = 7.14 mol
# mol H = 14.3 g / 1.008 g/mol = 14.19 mol
The proportion is 14.9 mol H/ 7.14 mol C = 2 mol H/ 1 mol C
So the empirical formula is CH₂
For the second part we will need to first calculate the theoretical yield for the 12.03 g NaBH₄ reacted and then calculate the percent yield given the 0.295 g B₂H₆ produced.
We need to calculate the moles of NaBH₄ ( M.W = 37.83 g/mol )
1.203 g NaBH₄ / 37.83 g/mol = 0.0318 mol
Theoretical yield from balanced chemical equation:
0.0318 mol NaBH₄ x 1 mol B₂H₆ / mol NaBH₄ = 0.0159 mol B₂H₆
Theoretical mass yield B₂H₆ = 0.0159 mol x 27.66 g/ mol = 0.440 g
% yield = 0.295 g/ 0.440 g x 100 = 67.1 %
<span>
</span>

<span>
You have OH- conc = </span>2.3 ✕ 10−6 m
From the formula, you can observe the ratio of Cu2+ to OH- is 4 : 6 = 2:3
So, for 2.3 ✕ 10−6 m OH-
[Cu2+] =

Answer:
0.03atm
Explanation:
Given parameters:
Total pressure = 780torr
Partial pressure of water vapor = 1.0atm
Unknown:
Partial pressure of radon = ?
Solution:
A sound knowledge of Dalton's law of partial pressure will help solve this problem.
The law states that "the total pressure of a mixture of gases is equal to the sum of the partial pressures of the constituent gases".
Mathematically;
P
= P
+ P
+ P
Since the total pressure is 780torr, convert this to atm;
760torr = 1 atm
780torr =
atm = 1.03atm
For this problem;
Total pressure = Partial pressure of radon + Partial pressure of water vapor
1.03 = Partial pressure of radon + 1.0
Partial pressure of radon = 1.03 - 1.00 = 0.03atm