Answer:
Angular displacement of the turbine is 234.62 radian
Explanation:
initial angular speed of the turbine is



similarly final angular speed is given as



angular acceleration of the turbine is given as

now we have to find the angular displacement is given as



Answer:
The gain in velocity is 0.37m/s
Explanation:
We need solve this problem though the conservation of momentum. That is,


Using the equation to find
,

Using the conservation of energy equation, we have,




Now this energy over the cannonball



The gain in velocity is 0.37m/s
Answer:
time is 3333.33 min or 55.55 hr
Explanation:
given data
reactor operating = 1 MW
negative reactivity = $5
power = 1 miliwatt
to find out
how long does it take
solution
we know here power coefficient that is
power coefficient = 
power coefficient = 1
so time required to reach power is
power = reactivity × time / power coefficient + reactor operating
1 ×
= -5 t / 1 + 1 × 
5t =
- 
t = 199999.99 sec
so time is 3333.33 min or 55.55 hr
Answer:
see below
Explanation:
this is because particles in solids are packed very closely together, thus , the particles collide with each other frequently and thus transfer of energy is faster. however, particles in liquid are closely packed but not as close as in solid so the particles do not collide as frequently. thus, transfer of energy slower than in solid. furthermore, the particles in gas are spaced far apart from each other, thus the particles don't collide with each other frequently, thus transfer of energy is very slow in gas.
hope you get it,
please mark
Answer:
468 m
Explanation:
So the building and the point where the laser hit the water surface make a right triangle. Let's call this triangle ABC where A is at the base of the building, B is at the top of the building, and C is where the laser hits the water surface. Similarly, the submarine, the projected submarine on the surface and the point where the laser hit the surface makes a another right triangle CDE. Let D be the submarine and E is the other point.
The length CE is length AE - length AC = 284 - 234 = 50 m
We can calculate the angle ECD:


This is also the angle ACB, so we can find the length AB:



So the height of the building is 468m