Since the sample inside the syringe is a gas, we assume that it is an ideal gas that is we use the expression PV = nRT. We can easily calculate the pressure as follows:
n = m /MM = 0.10 / 28 = 0.0036 mol
P = nRT / V = 0.0036(0.08206)(273.15) / 0.010
P = 8 atm
Answer :
YES, The precipitation reaction will occur.
Explanation : When we mix the aqueous solutions of Lead chloride and Ammonium sulfide a reaction will occur which is stated below :
![PbCl_{2} +(NH_{4}) _{2} S ----\ \textgreater \ PbS + 2[ (NH_{4})Cl]](https://tex.z-dn.net/?f=PbCl_%7B2%7D%20%2B%28NH_%7B4%7D%29%20_%7B2%7D%20S%20----%5C%20%5Ctextgreater%20%5C%20%20PbS%20%2B%202%5B%20%28NH_%7B4%7D%29Cl%5D%20)
The major product that is formed is Lead sulfate which is black in colour.
Once the reaction is complete one can observe a black precipitate getting obtained.
Answer: Solution A : ![[H_3O^+]=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
Solution B : ![[OH^-]=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
Solution C : ![[OH^-]=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration and pOH is calculated by taking negative logarithm of hydroxide ion concentration.

![[H_3O^+][OH^-]=10^{-14}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%5BOH%5E-%5D%3D10%5E%7B-14%7D)
a. Solution A: ![[OH^-]=3.33\times 10^{-7}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.33%5Ctimes%2010%5E%7B-7%7DM)
![[H_3O^+]=\frac{10^{-14}}{3.33\times 10^{-7}}=0.300\times 10^{-7}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B3.33%5Ctimes%2010%5E%7B-7%7D%7D%3D0.300%5Ctimes%2010%5E%7B-7%7DM)
b. Solution B : ![[H_3O^+]=9.33\times 10^{-9}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D9.33%5Ctimes%2010%5E%7B-9%7DM)
![[OH^-]=\frac{10^{-14}}{9.33\times 10^{-9}}=0.107\times 10^{-5}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B9.33%5Ctimes%2010%5E%7B-9%7D%7D%3D0.107%5Ctimes%2010%5E%7B-5%7DM)
c. Solution C : ![[H_3O^+]=5.65\times 10^{-4}M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%3D5.65%5Ctimes%2010%5E%7B-4%7DM)
![[OH^-]=\frac{10^{-14}}{5.65\times 10^{-4}}=0.177\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B5.65%5Ctimes%2010%5E%7B-4%7D%7D%3D0.177%5Ctimes%2010%5E%7B-10%7DM)
Answer:
0.032 L or 32 mL
Explanation:
Use the dilution equation M1V1 = M2V2
M1 = 9.0 M
V1 = This is what we're looking for.
M2 = 0.145 M
V2 = 2 L
Solve for V1 --> V1 = M2V2/M1
V1 = (0.145 M)(2 L) / (9.0 M) = 0.032 L