The answer
<span>the molar ratio for the following equation
____C3H8 + ____O2 Imported Asset ____CO2 + ____ H2O
</span>after it has been properly balanced:
__1_C3H8 + ____5O2 Imported Asset ____3CO2 + ____ 4H2O
proof:
number of C =3 (C3H8; 3CO2)
number of H =8 (C3H8 ; 4H2O)
number of O = 10(5x2) or (2x3+4) (5O2;4H2O)
the answer is
<span>Reactants: C3H8 = 1, O2 = 8; Products: CO2 = 3 and H2O = 4</span>
<span>bright yellow light and lots of heat-energy.</span>
A calorimeter contains reactants and a substance to absorb the heat absorbed. The initial temperature (before the reaction) of the heat absorbent is measured and then the final temperature (after the reaction) is also measured. The absorbent's specific heat capacity and mass are also known. Given all of this data, the equation:
Q = mcΔT
To find the heat released.
Answer:
particles in 2 moles.
Explanation:
The number of particles that are contained in one mole, the international unit of amount of substance: by definition, exactly 6.022×10²³, and it is dimensionless. It is named after the scientist Amedeo Avogadro.
It is also known as Avogadro's constant.
∴ Number of particles in one mole = 
∴ Number of particles in 2 mole = 2 times Number of particles in one mole
∴ Number of particles in 2 mole=
Hence there are
particles in 2 moles.
Answer:
a. 0.119mol Kr
Explanation:
To solve this problem, we must understand that;
Mass = number of moles x molar mass
Molar mass of Kr = 83.3g/mol
Ar = 40g/mol
He = 4g/mol
Ne = 20.18g/mol
a0.119 mol Kr mass = 0.119 x 83.3 = 9.9g
b 0.400 mol Ar mass = 0.4 x 40 = 16g
C 1.25 mol He mass = 1.25 x 4 = 5g
d 2.02 mol Ne mass = 2.02 x 20.18 = 40.8
Krypton is the answer