The acceleration should be a gain of 2 km/h per second
Directly proportional to the product of the two charges and inversely proportional to the square of the distance between them
Work, Kinetic Energy and Potential Energy
6.1 The Important Stuff 6.1.1 Kinetic Energy
For an object with mass m and speed v, the kinetic energy is defined as K = 1mv2
2
(6.1)
Kinetic energy is a scalar (it has magnitude but no direction); it is always a positive number; and it has SI units of kg · m2/s2. This new combination of the basic SI units is
known as the joule:
As we will see, the joule is also the unit of work W and potential energy U. Other energy
1joule = 1J = 1 kg·m2 (6.2) s2
units often seen are:
6.1.2 Work
1erg=1g·cm2 =10−7J 1eV=1.60×10−19J s2
When an object moves while a force is being exerted on it, then work is being done on the object by the force.
If an object moves through a displacement d while a constant force F is acting on it, the force does an amount of work equal to
W =F·d=Fdcosφ (6.3)
where φ is the angle between d and F.
Answer:
Initial Kinetic energy of alpha particle is 9.45x10⁻¹³ J .
Explanation:
The distance at which the initial kinetic energy of the particle is equal to the potential energy is known as closest distance. As it is Rutherford scattering, so it is a coulomb potential energy.
Let K be the initial kinetic energy of alpha particle and r be the closest approach distance. So,
Initial Kinetic Energy = Coulomb Potential Energy
K = 
Here, k is constant, e is charge of electron and Z is the atomic number of silver.
Put 9x10⁹ N m²/C² for k, 1.6x10⁻¹⁹ C for e, 47 for Z and 22.9x10⁻¹⁵ m for r in the above equation.
K = 
K = 9.45x10⁻¹³ J