Constant speed along the inclined surface = 30 m / 4 s = 7.5 m/s
Vertical speed = inclined speed * sin(45) = 7.5 *√2 / 2 = 5.3 m/s
Answer: 5.3 m/s
Answer:
Average speed of Elain = 60 km/h
Explanation:
Total Distance covered by Jack = 360km
Average Speed of Jack = 80 km/h
Time taken by Jack to complete his journey = Distance / Average speed = 360 km / 80 km/h
Time taken by Jack to complete his journey = 4.5 hours
As it is given the both Jack and Elain travelled the same amount of distance:
Total distance travelled by Elain = 360 km
It is given that Elain took 1.5 hourse more than Jack to cover the distance, so Time taken by Elain to cover the distance is = 4.5 hours + 1.5 hours = 6 hours
Average speed of Elain = Distance/ time = 360 km / 6 hours
Average speed of Elain = 60 km/h
Displacement = 0, assuming that he runs back to original position
Average velocity is displacement/ time, since displacement =0, velocity is also 0
Explanation:
potential energy =360800J
mass(m)=?
height (h)=25m
g=9.8m/s²
we have
potential energy =360800J
mgh=360800J
m×9.8×25=360800
m=360800/(9.8×25)=1472.653061kg
Answer: 100 suns
Explanation:
We can solve this with the following relation:

Where:
is the diameter of a dime
is the diameter of the Sun
is the distance between the Sun and the pinhole
is the amount of dimes that fit in a distance between the sunball and the pinhole
Finding
:


This is roughly the diameter of the Sun
Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

So, we have to divide this distance between
in order to find how many suns could it fit in this distance:
