Answer:
a) The final pressure is 1.68 atm.
b) The work done by the gas is 305.3 J.
Explanation:
a) The final pressure of an isothermal expansion is given by:
Where:
: is the initial pressure = 5.79 atm
: is the final pressure =?
: is the initial volume = 420 cm³
: is the final volume = 1450 cm³
n: is the number of moles of the gas
R: is the gas constant
Hence, the final pressure is 1.68 atm.
b) The work done by the isothermal expansion is:
Therefore, the work done by the gas is 305.3 J.
I hope it helps you!
Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
They discovered a vaccine to reduce illnesses, specifically Polio and Influenza. The work of Salk and Sabin has almost eradicated what was once a deadly disesase ( polio) . For example, there were 350,000 deaths related to poliovirus across the world in 1988 and they reduced to 22 in 2017. Also, their work has saved millions of lives from polio induced paralysis
Full moon!
when Earth is exactly between the Moon and Sun, Earth's shadow falls upon the surface of the Moon, dimming it and sometimes turning the surface red over the course of a few hours.
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.