When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Answer:
2.1 kg of water
Explanation:
Step 1: Given data
- Moles of lithium bromide (solute): 4.3 moles
- Molality of the solution (m): 2.05 m (2.05 mol/kg)
- Mass of water (solvent): ?
Step 2: Calculate the mass of water required
Molality is equal to the moles of solute divided by the kilograms of solvent.
m = moles of solute/kilograms of solvent
kilograms of solvent = moles of solute/m
kilograms of solvent = 4.3 mol /(2.05 mol/kg) = 2.1 kg
Answer:
V = 22.41 L
Explanation:
Given data:
Mass of nitrogen = 14.0 g
Volume of gas at STP = ?
Gas constant = 0.0821 atm.L/mol.K
Solution:
Number of moles of gas:
Number of moles = mass/molar mass
Number of moles= 14 g/ 14 g/mol
Number of moles = 1 mol
Volume of gas:
PV = nRT
1 atm × V = 1 mol × 0.0821 atm.L/mol.K × 273 K
V = 22.41 atm.L / 1 atm
V = 22.41 L
Answer:
oook
hi I am so sorry sorry sorry sorry I don't no answer
Explanation:
but you follow me and give me brainliest ok by by by by