Answer:
![\mathbf{P_x =25 \ watts}](https://tex.z-dn.net/?f=%5Cmathbf%7BP_x%20%3D25%20%5C%20watts%7D)
![\mathbf{x_{rmx} = 5 \ unit}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx_%7Brmx%7D%20%3D%205%20%5C%20unit%7D)
Explanation:
Given that:
x(t) = 10 sin(10t) . sin (15t)
the objective is to find the power and the rms value of the following signal square.
Recall that:
sin (A + B) + sin(A - B) = 2 sin A.cos B
x(t) = 10 sin(15t) . cos (10t)
x(t) = 5(2 sin (15t). cos (10t))
x(t) = 5 × ( sin (15t + 10t) + sin (15t-10t)
x(t) = 5sin(25 t) + 5 sin (5t)
From the knowledge of sinusoidial signal Asin (ωt), Power can be expressed as:
![P= \dfrac{A^2}{2}](https://tex.z-dn.net/?f=P%3D%20%5Cdfrac%7BA%5E2%7D%7B2%7D)
For the number of sinosoidial signals;
Power can be expressed as:
![P = \dfrac{A_1^2}{2}+ \dfrac{A_2^2}{2}+ \dfrac{A_3^2}{2}+ ...](https://tex.z-dn.net/?f=P%20%3D%20%5Cdfrac%7BA_1%5E2%7D%7B2%7D%2B%20%5Cdfrac%7BA_2%5E2%7D%7B2%7D%2B%20%5Cdfrac%7BA_3%5E2%7D%7B2%7D%2B%20...)
As such,
For x(t), Power ![P_x = \dfrac{5^2}{2}+ \dfrac{5^2}{2}](https://tex.z-dn.net/?f=P_x%20%3D%20%5Cdfrac%7B5%5E2%7D%7B2%7D%2B%20%5Cdfrac%7B5%5E2%7D%7B2%7D)
![P_x = \dfrac{25}{2}+ \dfrac{25}{2}](https://tex.z-dn.net/?f=P_x%20%3D%20%5Cdfrac%7B25%7D%7B2%7D%2B%20%5Cdfrac%7B25%7D%7B2%7D)
![P_x = \dfrac{50}{2}](https://tex.z-dn.net/?f=P_x%20%3D%20%5Cdfrac%7B50%7D%7B2%7D)
![\mathbf{P_x =25 \ watts}](https://tex.z-dn.net/?f=%5Cmathbf%7BP_x%20%3D25%20%5C%20watts%7D)
For the number of sinosoidial signals;
![RMS = \sqrt{(\dfrac{A_1}{\sqrt{2}})^2+(\dfrac{A_2}{\sqrt{2}})^2+(\dfrac{A_3}{\sqrt{2}})^2+...](https://tex.z-dn.net/?f=RMS%20%3D%20%5Csqrt%7B%28%5Cdfrac%7BA_1%7D%7B%5Csqrt%7B2%7D%7D%29%5E2%2B%28%5Cdfrac%7BA_2%7D%7B%5Csqrt%7B2%7D%7D%29%5E2%2B%28%5Cdfrac%7BA_3%7D%7B%5Csqrt%7B2%7D%7D%29%5E2%2B...)
For x(t), the RMS value is as follows:
![x_{rmx} =\sqrt{(\dfrac{5}{\sqrt{2}} )^2 +(\dfrac{5}{\sqrt{2}} )^2 }](https://tex.z-dn.net/?f=x_%7Brmx%7D%20%3D%5Csqrt%7B%28%5Cdfrac%7B5%7D%7B%5Csqrt%7B2%7D%7D%20%29%5E2%20%2B%28%5Cdfrac%7B5%7D%7B%5Csqrt%7B2%7D%7D%20%29%5E2%20%7D)
![x_{rmx }=\sqrt{(\dfrac{25}{2} ) +(\dfrac{25}{2} ) }](https://tex.z-dn.net/?f=x_%7Brmx%20%7D%3D%5Csqrt%7B%28%5Cdfrac%7B25%7D%7B2%7D%20%29%20%2B%28%5Cdfrac%7B25%7D%7B2%7D%20%29%20%7D)
![x_{rmx }=\sqrt{(\dfrac{50}{2} )}](https://tex.z-dn.net/?f=x_%7Brmx%20%7D%3D%5Csqrt%7B%28%5Cdfrac%7B50%7D%7B2%7D%20%29%7D)
![x_{rmx} =\sqrt{25}](https://tex.z-dn.net/?f=x_%7Brmx%7D%20%3D%5Csqrt%7B25%7D)
![\mathbf{x_{rmx} = 5 \ unit}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx_%7Brmx%7D%20%3D%205%20%5C%20unit%7D)