Answer:
45.3 MN
Explanation:
The forging force at the end of the stroke is given by
F = Y.π.r².[1 + (2μr/3h)]
The final height, h is given as h = 100/2
h = 50 mm
Next, we find the final radius by applying the volume constancy law
volumes before deformation = volumes after deformation
π * 75² * 2 * 100 = π * r² * 2 * 50
75² * 2 = r²
r² = 11250
r = √11250
r = 106 mm
E = In(100/50)
E = 0.69
From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula
F = Y.π.r².[1 + (2μr/3h)]
F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]
F = 35.3 * [1 + 0.2826]
F = 35.3 * 1.2826
F = 45.3 MN
Answer: I will list them down below!
Explanation:
He can buy 6, 50 cent candies.
He can buy 30, 20 cent candies.
He can buy 6, 30 cent candies and 6, 20 cent candies.
He can buy 15, 20 cent candies and 3, 50 cent candies.
He can by 3, 20 and 30 cent candies and 3, 50 cent candies.
That's it.
Hope this helps!
Answer:
The results of a percolation test will determine if there is suitable drainage and the size of the drain field that will be required for a septic system.
Answer:
A.) Find the answer in the explanation
B.) Ua = 7.33 m/s , Vb = 7.73 m/s
C.) Impulse = 17.6 Ns
D.) 49%
Explanation:
Let Ua = initial velocity of the rod A
Ub = initial velocity of the rod B
Va = final velocity of the rod A
Vb = final velocity of the rod B
Ma = mass of rod A
Mb = mass of rod B
Given that
Ma = 2kg
Mb = 1kg
Ub = 3 m/s
Va = 0
e = restitution coefficient = 0.65
The general expression for the velocities of the two rods after impact will be achieved by considering the conservation of linear momentum.
Please find the attached files for the solution