The molar mass of gas = 238.29 g/mol
<h3>Further explanation</h3>
Given
mass = 81.5 g
P=1.75 atm
V=4.92 L
T=307 K
Required
molar mass
Solution
The gas equation can be written


So the equation becomes :

Input the value :

Answer:A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance.
Explanation:
And yes I would love to talk
- Light energy from sun is converted into electrical energy in a solar cell.
- Electrical energy is stored as chemical energy in the solar cell.
- Chemical energy is converted back into electrical energy at night.
- Electrical energy is converted into light energy from the street lamp.
The answer is: the pressure inside a can of deodorant is 1.28 atm.
Gay-Lussac's Law: the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 1.0 atm.; initial pressure
T₁ = 15°C = 288.15 K; initial temperature.
T₂ = 95°C = 368.15 K, final temperature
p₂ = ?; final presure.
1.0 atm/288.15 K = p₂/368.15 K.
1.0 atm · 368.15 K = 288.15 K · p₂.
p₂ = 368.15 atm·K ÷ 288.15 K.
p₂ = 1.28 atm.
As the temperature goes up, the pressure also goes up and vice-versa.
Answer:
The correct answer is Glycolysis.
Explanation:
Glycolysis is a catabolic process that deals with the breakdown of glucose by 10 enzyme catalyzed steps to generate the end product pyruvate.
Glycolysis take place in the cytosol of an eukaryotic cell because the concentration of glucose and enzymes that catalyzes the break down of glucose remain significantly high in the cytosol.