1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
13

You wish to measure the iron content of the well water on the new property you are about to buy. You prepare a reference standar

d Fe3 solution with a concentration of 5.17 Ă— 10-4 M. You treat 13.0 mL of this reference with HNO3 and excess KSCN to form a red complex, and dilute the reference to 45.0 mL. The diluted reference is placed in a cell with a 1.00-cm light path. You then take 30.0 mL of the well water, treat with HNO3 and excess KSCN, and dilute to 100.0 mL. This diluted sample is placed in a variable pathlength cell. The absorbance of the reference and the sample solutions match when the pathlength is 4.78 cm. What is the concentration of iron in the well water? For each solution, the zero is set with a blank.
Chemistry
1 answer:
djverab [1.8K]3 years ago
6 0

1.04 ⨯ 10^{-4} M

<h3>Explanation</h3>

<em>A</em> = <em>ε</em> \cdot l \cdot c by the Beer-Lambert law, where

  • <em>A</em> the absorbance,
  • l the path length,
  • <em>ε</em> the molar absorptivity of the solute, and
  • c concentration of the solution.

<em>A</em> and <em>ε </em>are the same for both solutions. Therefore, l \cdot c is constant; l is inversely proportional to c. The 100 mL sample would have a concentration 1/4.78 times that of the 45.0 mL reference.

The 13.0 mL standard solution has a concentration of 5.17 ⨯ 10^{-4} M. Diluting it to 45.0 mL results in a concentration of 5.17 \times 10^{-4} \times \frac{13.0}{45.0} = 1.494 M.

c is inversely related to l for the two solutions. As a result, c₂ = c_1 \cdot \frac{l_1}{l_2} = 1.494 \times 10^{-4} \times \frac{1}{4.78} = 3.126 M.

The 30.0 mL sample has to be diluted by 30.0 / 100.0 times to produce the 100.0 mL solution being tested. The 100.0 mL solution has a concentration of 3.126 M. Therefore, the 30.0 mL solution has a concentration of 3.126 \times \frac{100.0}{30.0} = 1.04 ⨯ 10^{-4} M.

You might be interested in
What is the pH of a solution that has a hydronium ion concentration 100 times less than a solution with a pH of 6 explain your r
aksik [14]

Answer:

4

Explanation:

cuz i just took a test and the question was this just reversed. if the ph is 4 and the other ph is 100x greater it’s 6. i don’t kno the reasoning lol

4 0
3 years ago
Is there a way to stop radioactive decay?
Wittaler [7]
The chain reaction is easy to stop. Just add a neuron absorbing material. The Control Rods in rectors can do that You just SCRAM (put the rods all the way in) or add something like Boron and the chain reaction stops. 

<span>The problem is the radioactive waste. Those isotopes break down and release heat spontaneously, no neutrons required. The only known way to stop or slow radioactive decay down is to slow time down by moving at relativistic speed or near orbit to a black hole.</span>
4 0
3 years ago
Is melting point and boiling point chemical changes or physical changes?
mrs_skeptik [129]
Boiling water results in no chemical change. If water is just heated to its boiling temperature then there is a physical change.
4 0
3 years ago
Read 2 more answers
How many liters of hydrogen gas will be produced at STP from the reaction of 7.179×10^23 atoms of magnesium with 54.219g of phos
Alexeev081 [22]

Answer: The volume of hydrogen gas produced will be, 12.4 L

Explanation : Given,

Mass of H_3PO_4 = 54.219 g

Number of atoms of Mg = 7.179\times 10^{23}

Molar mass of H_3PO_4 = 98 g/mol

First we have to calculate the moles of H_3PO_4 and Mg.

\text{Moles of }H_3PO_4=\frac{\text{Given mass }H_3PO_4}{\text{Molar mass }H_3PO_4}

\text{Moles of }H_3PO_4=\frac{54.219g}{98g/mol}=0.553mol

and,

\text{Moles of }Mg=\frac{7.179\times 10^{23}}{6.022\times 10^{23}}=1.19mol

Now we have to calculate the limiting and excess reagent.

The balanced chemical equation is:

3Mg+2H_3PO_4\rightarrow Mg(PO_4)_2+3H_2

From the balanced reaction we conclude that

As, 3 mole of Mg react with 2 mole of H_3PO_4

So, 0.553 moles of Mg react with \frac{2}{3}\times 0.553=0.369 moles of H_3PO_4

From this we conclude that, H_3PO_4 is an excess reagent because the given moles are greater than the required moles and Mg is a limiting reagent and it limits the formation of product.

Now we have to calculate the moles of H_2

From the reaction, we conclude that

As, 3 mole of Mg react to give 3 mole of H_2

So, 0.553 mole of Mg react to give 0.553 mole of H_2

Now we have to calculate the volume of H_2  gas at STP.

As we know that, 1 mole of substance occupies 22.4 L volume of gas.

As, 1 mole of hydrogen gas occupies 22.4 L volume of hydrogen gas

So, 0.553 mole of hydrogen gas occupies 0.553\times 22.4=12.4L volume of hydrogen gas

Therefore, the volume of hydrogen gas produced will be, 12.4 L

4 0
3 years ago
If you had a glacier and an ice cube, how would the melting points of both differ?​
Dima020 [189]

Answer:

Due to how big the glacier is you would need more heat to melt it and since the ice cube is smaller a small amount of heat would melt it

Explanation:

8 0
3 years ago
Other questions:
  • Which of these redox reactions is spontaneous as written?
    10·1 answer
  • Ammonium phosphate nh43po4 is an important ingredient in many fertilizers. it can be made by reacting phosphoric acid h3po4 with
    11·2 answers
  • When given any reaction how do I figure out the products and then balance it?
    8·1 answer
  • Harry Hess’s explained how oceanic crust is produced and destroyed in his theory of _______
    11·1 answer
  • If 2.19 mol
    7·1 answer
  • Abbreviation for mole
    12·1 answer
  • A rectangle has a length of 5.50m and a width of 12.0m. What is the area of this rectangle?​
    8·1 answer
  • In the following structure, carbons (I),(2),(3) and (4) are classified respectively as
    8·1 answer
  • Help, please I don't understand what I have to do
    6·1 answer
  • Metals,nonmetals, metalloids
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!