The amount of W(OH)2 needed would be 448.126 g
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
W(OH)2 + 2 HCl → WCl2 + 2 H2O
The mole ratio of W(OH)2 to HCl is 1:2
Mole of 150g HCl = 150/36.461
= 4.11 moles
Equivalent mole of W(OH)2 = 4.11/2
= 2.06 moles
Mass of 2.06 moles W(OH)2 = 2.06 x 217.855
= 448.188g
More on stoichiometric calculations can be found here: brainly.com/question/8062886
Answer and Explanation:
a) The direction is shown in the cube diagram attached to this solution.
b) the angle between two planes (h₁, k₁, l₁) and (h₂, k₂, l₂) is given by the formula,
Cos Φ = (h₁h₂ + k₁k₂ + l₁)/√((h₁² + k₁² + l₁²)(h₂² + k₂² + l₂²))
For (111) and (112)
Cos Φ = (1.1 + 1.1 + 1.2)/√((1² + 1² + 1²)(1² + 1² + 2²))
Cos Φ = (1 + 1 + 2)/√((1+1+1)(1+1+4))
Cos Φ = 4/√(3×6)
Cos Φ = 4/√18
Φ = cos⁻¹ (4/√18) = 19.56°
c) equation 3.3 is missing from the question, I would be back to provide the answers to that as soon as the equation is provided!
Hope this Helps!!
Answer:
Brainliest pls
Explanation:
The components potassium and sodium have comparable substance properties since they have a similar number of valence electrons
<span>Assuming that there are 36 strontium and 24 phosphate, there
aren’t any equal cations and anoins because in theory only one ionic bond is
formed by a strontium with each phosphate ion. To the point that a cation will
eventually have an excess.</span>
Answer:
31.5 mL of a 2.50M NaOH solution
Explanation:
Molarity (M) is an unit of concentration defined as moles of solute (In this case, NaOH), per liter of solvent. That is:
Molarity = moles solute / Liter solvent
If you want to make 525mL (0.525L) of a 0.150M of NaOH, you need:
0.525L × (0.150mol / L) = <em>0.07875 moles of NaOH</em>
<em />
If you want to obtain these moles from a 2.50M NaOH solution:
0.07875mol NaOH × (1L / 2.50M) = 0.0315L = <em>31.5 mL of a 2.50M NaOH solution</em>