m = 5 kg
a = 2 m/s²
to find the force that accelerates the 4 kg object @ 2 m/s²
F = ma = 5 kg x 2 m/s² = 10 N
To find what acceleration 10 N would give a 20 kg object
a = F/m = 10 N/20 kg = 0.5 m/s
Answer:
The time constant is
Explanation:
From the question we are told that
The spring constant is 
The mass of the ball is 
The amplitude of the oscillation t the beginning is 
The amplitude after time t is 
The number of oscillation is 
Generally the time taken to attain the second amplitude is mathematically represented as
Here T is the period of oscillation

=> 
=> 
Generally the amplitude at time t is mathematically represented as

Here a is the damping constant so
at
, 
So

=> 
taking natural log of both sides
=>
=> 
Generally the time constant is mathematically represented as
=>
=>
Answer:
Explanation:
The acceleration of gravity is 9.8m/s^2.
So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.
(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )
We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.
Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .
<span>The energy source provides about 90% of the glucose needed to fuel the body in the first few days of the fast is protein. protein is a string of amino acids that peforms a variety of functions to the body. These are found in foods like eggs, cheese, chicken breasts, meat and many more/.</span>
Answer:

Explanation:
We can use the following kinematics equations to solve this problem:
.
Using the first one to solve for acceleration:
.
Now we can use the second equation to solve for the distance travelled by the airplane:
(three significant figures).