Gravity decreases your kinetic energy when you are driving uphill since the direction of motion is opposite for both. Driving uphill is force going upward while gravity pulls object down. When it is going downhill, the car tends to go faster since the gravity helps the object to go down by adding another value to the total acceleration of the motion of the object. Using the forces of balance, an object going up tends to become heavier while object going down tends to become lighter because of the gravity factor. Another analogy is the motion of elevators going up and down that incurs effects to your weiight.
Hydroelectric plants are used to produce electricity is the statement that best explains the relationship between energy and motion.
<h3>Explains the relationship between energy and motion in the process?</h3>
There is direct relationship between energy and motion in the process because if we increase the motion of the turbines, more electricity is produced in the generator and vice versa.
So we can conclude that the relationship between energy and motion in the process is directly proportional to each other.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
The magnitude of the magnetic field is 1.01T and its direction is in the negative x direction
Explanation:
In order to calculate the magnitude and direction of the magnetic field, you take into account the following equation for the magnetic force on the proton:
(1)
v: speed of the proton = 9.9*10^5 m/s
q: charge of the proton = 1.6*10^-19C
B: magnetic field = ?
FB: magnetic force on the proton = 1.6*10^-13N
When the proton travels in the positive y direction (^j), you have that the proton experiences a force in the positive z direction (+^k). To obtain this direction of the magnetic force on the proton, it is necessary that the magnetic field points in the negative x direction, in fact, you have:
^j X (-^i) = -(-^k)=^k
To obtain the magnitude of the magnetic field you use:
The magnitude of the magnetic field is 1.01T and its direction is in the negative x direction
Answer:
v= 4055.08m/s
Explanation:
This is a problem that must be addressed through the laws of classical mechanics that concern Potential Gravitational Energy.
We know for definition that,
We must find the highest point and the lowest point to identify the change in energy, so
Point a)
The problem tells us that an object is dropped at a distance of h = 1.15134R over the earth.
That is to say that the energy of that object is equal to,
Point B )
We now use the average radius distance from the earth.
Then,
By the law of conservation of energy we know that,
clearing v,
Therefore the speed of the object when it strikes the Earth’s surface is 4055.08m/s