Inertia is defined as the property of matter by which causes it to resist changes in its state of motion such as changes in velocity. From the given options above, the option that has the greatest inertia would be option B. A jet airliner.
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.
Explanation:
Ok, let's write the definitions:
Displacement: The displacement is equal to the difference between the final position and the initial position.
Distance traveled: Total distance that you moved.
So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:
The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.
But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.
So no, we can have a displacement equal to zero, but a distance traveled different than zero.