Ok thanks wkwksnmenenenenenenwnwnnwnwnwnw
The two properties of most non metals are high ionization energy and poor electrical conductivity. The correct option among all the options that are given in the question is option "1".
In general it is known that nonmetals are very poor
conductors of heat and electricity. The nonmetals that are solid are normally
very brittle and has very little or no metallic luster at all. Nonmetals are
highly reactive and show variety of chemical properties. It can also be pointed
out that the nonmetals gain electrons very easily.
Answer:
The basicity of HCOOH (otherwise known as formic acid) is 1
Explanation:
Half-life is the length of time it takes for half of the radioactive atoms of a specific radionuclide to decay. A good rule of thumb is that, after seven half-lives, you will have less than one percent of the original amount of radiation.
<h3>What do you mean by half-life?</h3>
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive.
<h3>What affects the half-life of an isotope?</h3>
Since the chemical bonding between atoms involves the deformation of atomic electron wavefunctions, the radioactive half-life of an atom can depend on how it is bonded to other atoms. Simply by changing the neighboring atoms that are bonded to a radioactive isotope, we can change its half-life.
Learn more about half life of an isotope here:
<h3>
brainly.com/question/13979590</h3><h3 /><h3>#SPJ4</h3>
Answer:
The frequency of the electromagnetic wave is 7.22891566 × 10¹⁴ Hz
Explanation:
The wavelength of the electromagnetic wave, λ = 415 nm
The speed of an electromagnetic wave, c ≈ 3.0 × 10⁸ m/s
Given that an electromagnetic wave is a periodic wave, we have;
The speed of the electromagnetic wave, c = f×λ
Where;
f = The frequency of the electromagnetic wave
Therefore, we have;
f = c/λ
From which we have;
f = (3.0 × 10⁸ m/s)/(415 nm) = 7.22891566 × 10¹⁴ /s = 7.22891566 × 10¹⁴ Hz
The frequency of the electromagnetic wave, f = 7.22891566 × 10¹⁴ Hz