Remembering the equation Q=MCdeltaT where
q=is the amount of heat energy
M=mass
C=specific heat
deltaT= change in temperature
Therefore, using the equation we can substitute values and solve for q.
Q= (15 grams) (0.129 J/(gx°C))(85-22)
Q=(15) ((0.129 J/(gx°C)) (63)
Q=121.9 Joules
The energy needed to raise the temperature of 15 grams of gold from 22 degrees Celsius to 85 degrees Celsius is then 121.9 Joules or 122 Joules (if rounded up).
When one mole of Na3PO4.3H2O is heated extensively, three moles of water are released.
The water molecules in Na3PO4.3H2O are called molecules of water of crystallization. These molecules are not covalently bonded to the Na3PO4 molecule. They are only loosely attached to the substance.
Strong heating will drive away these molecules of water of crystallization to give three moles of water in the product.
Hence, when one mole of Na3PO4.3H2O is heated extensively, three moles of water are released.
Learn more: brainly.com/question/14252791
Blank 1: polar
The difference in electronegativity between N and H causes electrons to preferentially orbit N, making the bond polar.
Blank 2: trigonal pyramidal
There are four “things” attached to N - 3 H’s and 1 lone pair of electrons. The four things together are arranged into a tetrahedral formation. However, the lone pairs don’t actually contribute to the shape of the molecule per se; it’s only the actual atoms that do. The lone pair creates a bit of repulsion that pushes the 3 H’s down, creating a trigonal pyramidal shape (as opposed to a trigonal planar one).
Blank 3: polar
The molecule as a whole is also polar because the “things” around it, though arranged in a tetrahedral pattern, are not all the same. The side of the molecule with the lone pair is slightly negative, while the side with the 3 H’s is slightly positive due to the differences in electronegativity described above.
Answer:
no .........................