The first three are T I don’t know about the next two and the last one is T
Fe O
2 3 is what i would put
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
Fluoride is commonly used in dentistry to strengthen enamel, which is the outer layer of your teeth. Fluoride helps to prevent cavities. It’s also added in small amounts to public water supplies in the United States and in many other countries. This process is called water fluoridation.
Explanation:
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.