Answer:
electromagnetic waves
Explanation:
"wave" is a common term for a number different ways in which energy is transferred
It's very hard to see the self-portrait, so I can't identify him.
Answer:
The ratio is KE : TM = 0.75
Explanation:
from the question we are told that
The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position
Generally the total mechanical energy of the mass is mathematically represented as

Here k is the spring constant , A is the total displacement of the the mass from maximum compression to maximum extension of the spring
Generally this total mechanical energy is mathematically represented as

=> 
Here the potential energy of the mass is mathematically represented as
![PE = \frac{1}{ 2} * k * [ x ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20x%20%5D%5E2)
Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is

So
![PE = \frac{1}{ 2} * k * [ \frac{A}{2} ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20%5Cfrac%7BA%7D%7B2%7D%20%20%5D%5E2)
So
![KE = \frac{1}{2} * k * A^2 - \frac{1}{2} * k * [\frac{A}{2} ]^2](https://tex.z-dn.net/?f=KE%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20A%5E2%20-%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20%5B%5Cfrac%7BA%7D%7B2%7D%20%5D%5E2)
=> 
=> 
So the ratio of
is mathematically represented as

=>
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:
what is the question I cannot click the
Explanation: