Answer:
nitrogen
Explanation:
because I also had this in exam and I was correct
Answer:
W = 14523.6 J
Explanation:
Given,
Mass = 3.9 Kg
Vertical height , h = 380 m
Work done against gravitational force
W = m g h
g is acceleration due to gravity
W = 3.9 x 9.8 x 380
W = 14523.6 J
Hence, the work done by the gravitational force is equal to W = 14523.6 J
Answer:
–50.96
Explanation:
The following data were obtained from the question:
Initial velocity (Vᵢ) = 0 m/s
Acceleration (a) = – 9.8 m/s²
Time (t) = 5.2 s
Final velocity (Vբ) =.?
Acceleration is simply defined as the change of velocity with time. Mathematically, it is expressed as:
Acceleration (a) = Final velocity (Vբ) – Initial velocity (Vᵢ) /Time (t) =
a = (Vբ – Vᵢ) / t
With the above formula, we can determine how fast the object is traveling after 5 s as follow:
Initial velocity (Vᵢ) = 0 m/s
Acceleration (a) = – 9.8 m/s²
Time (t) = 5.2 s
Final velocity (Vբ) =.?
a = (Vբ – Vᵢ) / t
– 9.8 = (Vբ – 0) / 5.2
– 9.8 = Vբ / 5.2
Cross multiply
Vբ = –9.8 × 5.2
Vբ = –50.96 m/s
Therefore, the object is traveling at
–50.96 m/s
Answer:
841.5 Hz
Explanation:
Given
y = 50 cm = 0.5 m
d = 5.00 m
L = 12.0 m away from the wall
v = speed of sound = 343 m/s
The image of the scenario is presented in the attached image.
When destructive interference is being experienced from 50 cm (0.5 m) parallel to the wall, the path difference between the distance of the two speakers from the observer is equal to half of the wavelength of the wave.
Let the distance from speaker one to the observer's new position be d₁
And the distance from the speaker two to the observer's new position be d₂
(λ/2) = |d₁ - d₂|
d₁ = √(12² + 3²) = 12.3693 m
d₂ = √(12² + 2²) = 12.1655 m
|d₁ - d₂| = 0.2038 m
(λ/2) = |d₁ - d₂| = 0.2038
λ = 0.4076 m
For waves, the velocity (v), frequency (f) and wavelength (λ) are related thus
v = fλ
f = (v/λ) = (343/0.4076) = 841.5 Hz
Hope this Helps!!!