Explanation:
Given that,
Each vertical line on the graph is 1 millisecond (0.001 s) of time.
We need to find the period and the frequency of the sound wave. The period of a wave is equal to the each vertical line on graph i.e. 0.001 s.
Let f be the frequency of the sound wave. So,
f = 1/T
i.e.

So, the period and the frequency of the sound waves is 1 milliseond and 1000 Hz respectively.
Answer: D
If the fog disappears when the Sun comes out, then this is an example of condensation because:
the Sun actually dries up the fog, and it makes it into higher clouds.
Hope this helps you!
Answer:
a) 
b) The second runner will win
c) d = 10.54m
Explanation:
For part (a):

For part (b) we will calculate the amount of time that takes both runners to cross the finish line:


Since it takes less time to the second runner to cross the finish line, we can say the she won the race.
For part (c), we know how much time it takes the second runner to win, so we just need the position of the first runner in that moment:
X1 = V1*t2 = 239.46m Since the finish line was 250m away:
d = 250m - 239.46m = 10.54m
They are fused in the core of the star due to great pressures and temperatures. They are made all the way through iron. At that point the star dies. If it is a really large star it will become a supernova when it dies, creating all of the elements beyond iron as well, but only in its death. No star can create anything beyond iron in its life cycle
Answer:
L = 5076.5 kg m² / s
Explanation:
The angular momentum of a particle is given by
L = r xp
L = r m v sin θ
the bold are vectors, where the angle is between the position vector and the velocity, in this case it is 90º therefore the sine is 1
as we have two bodies
L = 2 r m v
let's find the distance from the center of mass, let's place a reference frame on one of the masses
=
i
x_{cm} =
x_{cm} =
x_{cm} =
x_{cm} = 13.1 / 2 = 6.05 m
let's calculate
L = 2 6.05 74.3 5.65
L = 5076.5 kg m² / s