Answer:The object characteristics
Explanation:the objects characteristics
Answer:
Option A.
Explanation:
In quantum physics <u>there is a law to relate the position and the momentum of the particle</u>, it says that if we know with precision where is a quantum particle, we can not know the momentum of this particle, in other words, the velocity of the particle. So, when we measure the velocity of the particle we find the correct value of the particle, but we can not determine with accuracy where is the particle. This law is known as the Heisenberg's uncertainty principle and, its expressed as follows:
<em>where Δx: is the position's uncertainty, Δp: is the momentum's uncertainty and h: is the Planck constant.</em>
Therefore, the correct answer is A: measuring the velocity of a tiny particle with an electromagnet has no effect on the velocity of the particle. It only affects the determination of the particle's position.
I hope it helps you!
Answer:
an example of an exthermic process is combustion
Explanation:
combustion is like lighting a candle
Answer:0,002 = 2 x 10⁻³
Explanation:
0,002 = 2 / 1000 = 2 / 10³ = 2 x 10⁻³
Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s