Answer:
To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.
Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:
- Press start on the stopwatch right as you pass a lamp post
- Each time you pass another lamp post, press the lap button on the stopwatch
- Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
- Record your data
- Calculate the time intervals for passing each lamp post using the lap data
- Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed
Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.
<span>Oceanography is the study of the ocean and the cryosphere are the portions of the earth that are just frozen water (ice). When fresh water glaciers melt, they lower the salt levels in the ocean and and oceanographer studies that and makes sure that it wont have too much of an effect. The cryosphere plays a significant role in the global climate. </span>
Answer:
A
Explanation:
I only think its A because of the gravity part...sorry im not good at explaining
Answer:

Explanation:
Distance travelled = 200 metre
Time taken = 24 second
Velocity = ?
<u>Finding </u><u>the</u><u> </u><u>velocity</u><u> </u>



Hope I helped!
Best regards!
Answer:
the propagation velocity of the wave is 274.2 m/s
Explanation:
Given;
length of the string, L = 1.5 m
mass of the string, m = 0.002 kg
Tension of the string, T = 100 N
wavelength, λ = 1.5 m
The propagation velocity of the wave is calculated as;

Therefore, the propagation velocity of the wave is 274.2 m/s