1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
2 years ago
13

A 1.00 x 104 W electric motor is used to lift a

Physics
1 answer:
Alexus [3.1K]2 years ago
4 0

Answer: 52%

Explanation:

1W = 1 J/s

motor input is 10000 J/s

Potential energy change

PE = 955(9.81)(25.0) = 234,213.75

power needed to change the PE in that time

P = 234,213.75/ 45 = 5,204.75 Watts

motor is 5204.75 / 10000 = 0.520475 or 52% efficient

You might be interested in
Equation of orbit under central force​
SOVA2 [1]

I found this on arxsiv.org: “The central force motion between two bodies about their center of mass can be reduced to an equivalent one body problem in terms of their reduced mass m and their relative radial distance r. ... The potential V (r) from which this force is derived is also a function of r alone, F = −VV, V ≡ V (r).”

Mark as BRAINLIEST?

8 0
2 years ago
a 10.0 kg sphere is released from rest in an ocean. as it falls, the water applies a resistive force r
dimaraw [331]

The calculated coefficient of kinetic friction is 0.33125.'

The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.

given mass of the block=10 kg

spring constant k= 2250 Nm

now according to principal of conservation of energy we observe,

the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.

mgh= μ (mgl) +1/2 kx²

10 x 10 x 3= μ(600) +(1125) (0.09)

μ(600) =300 - 101.25

μ = 198.75÷600

μ =0.33125

The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)

Learn more about kinetic friction here-

brainly.com/question/13754413

#SPJ4

4 0
1 year ago
A resistor has four colored stripes in the following order: orange, orange, brown and silver. What is the resistance of the resi
zubka84 [21]

Answer:

Resistance =330 Ω

Tolerance = 33 Ω

Explanation:

see attached resistor color code table

The first stripe is orange, which means the leftmost digit is a 3.

The second stripe is orange , which means the next digit is a 3.

The third stripe is brown.  Since brown is 1, it means add one zero to the right of the first two digits.

The resistance is:

orange-orange-brown=  330 Ω

The tolerance is:

The fourth color band indicates the resistor's tolerance.  Tolerance is the percentage of error in the resistor's resistance.

silver is 10%

A 330 Ω resistor has a silver tolerance band.  

<em>Tolerance = value of resistor x value of tolerance band </em>

= 330 Ω x 10% = 33 Ω

330 Ω stated resistance +/- 33 Ω tolerance means that the resistor could range in actual value from as much as 363 Ω to as little as 297 Ω.

7 0
3 years ago
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
A car travels up a hill at a constant speed of 38 km/h and returns down the hill at a constant speed of 66 km/h. Calculate the a
mojhsa [17]

Answer:

Average speed will be 48.23 km/h

Explanation:

Let the distance up to hill is = d km

Speed when car goes to hill = 38 km/h

So time required t=\frac{distance}{speed}=\frac{d}{38}hour

Speed when car return from hill = 66 km/h

So time required to return fro hill t=\frac{d}{66}h

Total time t_{total}=\frac{t}{38}+\frac{t}{66}

Total distance = d+d =2d

So average speed=\frac{total\ distance}{total\ time}=\frac{2d}{\frac{d}{38}+\frac{d}{66}}=48.23km/h

8 0
3 years ago
Other questions:
  • Specific heat refers to the amount of heat required to change 1 gram of a substance by _______ degree(s) Celsius.
    12·2 answers
  • Calculate the final temperature of a mixture of 0.350 kg of ice initially at 218°C and 237 g of water initially at 100.0°C.
    6·1 answer
  • Students perform an experiment in which they drop two eggs with equal mass from a balcony. In the first trial, the egg hits the
    5·2 answers
  • Which type of telescope focuses star light using mirrors?
    6·1 answer
  • Is this answer correct?
    8·1 answer
  • Two straight wires carry current of 5A opposite direction separated by a distance of 30cm. What is the magnitude of magnetic fie
    11·1 answer
  • Help!
    12·1 answer
  • What is the fastest thing in the world, and what is its speed?
    8·1 answer
  • how can you find the mechanical advantage of the six different simple machines? (simples mechinals are pulleys, inclined plane,
    9·1 answer
  • The amplitude of a lightly damped oscillator decreases by 4.2% during each cycle. What percentage of the mechanical energy of th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!