Answer:
<h2>Virtual image</h2>
Explanation:
<h3>
<em>Virtual</em><em> </em><em>image</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>caught</em><em> </em><em>on</em><em> </em><em>a</em><em> </em><em>screen</em></h3>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>brainliest</em><em>!</em>
<em>follow</em><em> </em><em>~</em><em>H</em><em>i</em><em>1</em><em>3</em><em>1</em><em>5</em><em>~</em>
Answer:
The spring force constant is
.
Explanation:
We are told the mass of the ball is
, the height above the spring where the ball is dropped is
, the length the ball compresses the spring is
and the acceleration of gravity is
.
We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy
is equal to the final mechanical energy
:

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

If we manipulate the equation we have that:




Answer:
Earth would continue moving by uniform motion, with constant velocity, in a straight line
Explanation:
The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:
"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"
This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.
In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.
Answer:
6 N
Explanation:
= Mass flow rate = 1 kg/s
v = Final velocity = 6 m/s
u = Initial velocity = 0 m/s
Force is obtained when we divide change in momentum by time

The force the person exert on the extinguisher in order to prevent it from accelerating is 6 N
Answer: Frequency factor A = 8 × 10⁹
activation energy Ea = 15.5 KJ/Mol
Explanation: to begin, let us first define the parameters given;
K₁ = 1.44 × 10⁷dm³mol⁻¹s⁻¹
K₂ = 3.03 × 10⁷ dm³mol⁻¹s⁻¹
K₃ = 6.9 × 10 dm³mol⁻¹s⁻¹
also T₁ = 300.3 K
T₂ = 341.2 K
T₃ = 392.2 K
we know that;
㏑ K₂ / K₁ = Ea/R [1/T₁ -1/T₂]
where R is given as 8.314 J/mol-k
Ea = activation energy
K₁, K₂ = rate constant
T₁, T₂ = Temperature
therefore, ㏑ (3.03 × 10⁷/ 1.44 × 10⁷) = Ea / 8.314 [1/300.3 - 1/341.2]
this gives Ea = 15496.16 J/Mol ≈ 15.5 KJ /Mol
∴ Ea = 15.5 KJ/ Mol
also given that K = A e⁻∧Ea/RT
here A = frequency factor
∴ 6.9 × 10⁷ = A e⁻ ∧(15496.16/8.314 × 392.2)
A = 7.99 × 10⁹ = 8 × 10⁹