Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
For every actions, there is an opposite reaction.
Answer:
acceleration, a = 9.8 m/s²
Explanation:
'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.
u = 0 m/s
After 2 seconds, velocity of the ball is 19.6 m/s.
t = 2s, v = 19.6 m/s
Using
v = u + at
19.6 = 0 + 2a
a = 9.8 m/s²
Answer:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.
The banking angle of the curved part of the speedway is determined as 32⁰.
<h3>
Banking angle of the curved road</h3>
The banking angle of the curved part of the speedway is calculated as follows;
V(max) = √(rg tanθ)
where;
- r is radius of the path
- g is acceleration due to gravity
V² = rg tanθ
tanθ = V²/rg
tanθ = (34²)/(190 x 9.8)
tanθ = 0.62
θ = arc tan(0.62)
θ = 31.8
θ ≈ 32⁰
Learn more about banking angle here: brainly.com/question/8169892
#SPJ1