Answer:
10.945 x 10^-4
Explanation:
Balanced equation:
Mn(OH)2 + 2 HCl --> MnCl2 + H2O
it takes 2 moles HCL for each mole Mn(OH)2
Next find the molarity of the Mn(OH)2 solution
= (1 mole Mn(OH)2 / 2 mole HCl) X (0.0020 mole HCl / 1000ml) X (4.86 ml)
= 4.86 x 10^-3 mole
this is now dissolved in (70 + 4.86) = 74.86 ml or 0.07486 L
thus [Mn(OH)2] = 4.86 x 10^-3 mole / 0.07486 L = 0.064921 M
Ksp = [Mn2+][OH-]^2 = 4x^3 = 4(0.064921)^3 = 10.945 x 10^-4
Answer:

Explanation:
Here in Calcium Chloride ionic bond is present in between calcium and chlorine atoms. As we know according to Octet rule calcium have two excess atoms and for matching nearest noble gas electronic configuration. It donate two electrons to gain more stability and form
, while chlorine is deficient from one electron to meet nearest noble gas electronic configuration therefore two chlorine atoms accept excess electron from calcium individually and form two
ions.

Hence aqueous solution of calcium chloride breaks the ionic bond pairing in one
and two
ions: 
Alkaline Earth Metals are the elements located in the second period from the left of the periodic table. These elements lose two electrons to form the stable octet when forming an ionic bond, resulting in a net charge of +2. Because they’re trying to get rid of those electrons to get to the stable octet, it’s easy to remove them - this means that the ionization energy of these elements is relatively low. Finally, since they’re looking to get rid of electrons, they certainly aren’t trying to gain any, meaning that their electronegativity is relatively low.
The correct answers are A and D.
Answer:
Let's start by using the definition of acceleration. Acceleration is defined as the change in velocity over the change in time. In equation, that would be Δvelocity/Δtime. Based on the axes of the given graph, it shows the trend of position over time. So, the slope of the line and the curve shows the change of position over change of time, Δdistance/Δtime. In physics, this is the definition of speed or velocity. So, Maia is incorrect. Both curves show the speed or velocity of the object, and not acceleration. If the graph used a y-axis of velocity instead of position, then only at that instance, would be Maia be correct.
The difference between the two is, the straight line shows constant velocity while the curve line shows changing velocity.
Explanation: