Answer:
The voltage is
Explanation:
From the question we are told that
The time that has passed is 
Here
is know as the time constant
The voltage of the power source is 
Generally the voltage equation for charging a capacitor is mathematically represented as
![V = V_b [1 - e^{- \frac{t}{\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7Bt%7D%7B%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{\frac{\tau}{2}}{\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B%5Cfrac%7B%5Ctau%7D%7B2%7D%7D%7B%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{\tau}{2\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B%5Ctau%7D%7B2%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{1}{2} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B1%7D%7B2%7D%20%7D%5D)
=>
Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
I believe the term Frequency is what you are looking for.
Answer:
<h2>Angular Displacement 6.28 radians</h2>
Explanation:
for circular motion we are expected to solve for Angular Displacement it is measured in radian
Measurement of Angular Displacement.
we can measure it using the following relation
∅= s/r
where
s = the distance travelled by the body, and
r = radius of the circle along which it is moving.
given that
circumference c, s= 400 m
r= ?
we have to solve for the radius
we know that circumference

400= 2*3.142*r
400= 6.282*r
divide both sides by 6.284 we have
400/6.284
r= 63.63 m
Angular displcament
∅= 400/63.63
∅= 6.28 radians
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance