Answer:
slower speeds = larger and faster steering wheel movements
faster speeds = small and slow steering wheel movements
Explanation:
When driving at slower speeds you need to use larger and faster steering wheel movements. This is because at slow speeds the car does not have enough momentum to make certain maneuvers with small steering wheel movements in a given amount of time, therefore making large and faster steering wheel movements gives the car enough time with the momentum it has to make the desired maneuver. At faster speeds only small and slow steering wheel movements are needed and while cause the car to quickly change to the desired direction due to the increased momentum of the car.
Answer:
Correct answer: (a) Ekmax = 1.3 · 10⁻¹⁹ J, (b) ε = 5 eV, (c) f = 1.21 · 10¹⁵ Hz
Explanation:
Given:
photon energy ε = 8 · 10⁻¹⁹ J
work function for metal Wf = 6.7 · 10⁻¹⁹ J
(a) Ekmax = ?
The Einstein equation for photo effect is:
ε = Wf + Ekmax ⇒ Ekmax = ε - Wf
Ekmax = 8 · 10⁻¹⁹ - 6.7 · 10⁻¹⁹ = 1.3 · 10⁻¹⁹ J
Ekmax = 1.3 · 10⁻¹⁹ J
(b) ε = ? eV
the relationship between 1 eV and 1 J is:
1 eV = 1.6 · 10⁻¹⁹ J
so the energy of one photon in eV equals:
ε = 8 · 10⁻¹⁹ J = 8 · 10⁻¹⁹ / 1.6 · 10⁻¹⁹ eV = 5 eV
ε = 5 eV
(c) f = ?
the energy of a single photon is calculated according to the formula:
ε = h · f
where is:
h = 6.62 · 10⁻³⁴ J s plank constant
and f frequency of each photon (electromagnetic radiation)
f = ε / h = 8 · 10⁻¹⁹ J / 6.62 · 10⁻³⁴ J s = 1.21 · 10¹⁵ s⁻¹ = 1.21 · 10¹⁵ Hz
f = 1.21 · 10¹⁵ Hz
God is with you!!!
It couses corrosion of the metal forming the car engin
Answer:
The value is
or 21.45%
Explanation:
From the question we are told that
The first reservoir is at steam point
The second reservoir is at room temperature 
Generally the maximum theoretical efficiency of a Carnot engine is mathematically evaluated as

=> 
=>
<span>from a trough to the rest position and from a crest to the rest position.
</span>