Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.
Explanation:
Below is an attachment containing the solution.
Answer:
mainline current
Explanation:
Current that flows from and back to the power supply in a parallel circuit. Fuse. A type of circuit protection device.
Answer:
Explanation:You can download the anly/3fcEdSxs
wer here. Link below!
bit.
This is an example of resonance - when one object vibrating at the same natural frequency of a second object forces that second object into vibrational motion. The result of resonance is always a large vibration.
Answer D. Forced vibrations, such as those between a tuning fork and a large cabinet surface, result in a much lower sound than was produced by the original vibrating body Because this statement contridicts the above statement, it is not accurate