Answer:
Explanation:
distance of fan A = 18.3 m
distance of fan B = 127 m
speed of sound (s) = 343 m/s
What is the time difference between hearing the sound at the two locations?
time (T) = distance / speed
- time for sound to reach fan A = 18.3 / 343 = 0.053 s
- time it takes for sound to reach fan B = 127 / 343 = 0.370 s
- time difference = 0.370 - 0.053 = 0.317 s
Answer:
Simple harmonic motion is the movement of a body or an object to and from an equilibrium position. In a simple harmonic motion, the maximum displacement (also called the amplitude) on one side of the equilibrium position is equal to the maximum displacement.
The force acting on an object must satisfy Hooke's law for the object to undergo simple harmonic motion. The law states that the force must be directed always towards the equilibrium position and also directly proportional to the distance from this position.
The acceleration of the car is solved by subtracting the initial speed from the final speed then dividing the result by the elapsed time.
initial speed = 72 km/hr = 20 m/s
final speed = 0 m/s
elapsed time = 5 seconds
acceleration = (0 m/s – 20 m/s) / 5 s
acceleration = - 20m/s / 5 s
acceleration = -4 m/s^2
Answer:
10 kg
Explanation:
Assuming a frictionless surface, then force F=ma where F is the applied force, m is the mass and a is acceleration. Making m the subject of the formula then 
Substituting 100 N for the applied force F and 10 m/s^2 for acceleration a then the value of m will be 
Therefore, in terms of kilograms, the bookshelf weighs 10 Kg
Here, you can calculate it's potential energy with respect to ground.
We know, U = mgh
Here, m = 75 Kg
g = 9.8 m/s² [ constant value for earth system ]
h = 300 m
Substitute their values into the expression:
U = 75 × 9.8 × 300
U = 220500 J
In short, Your Final Answer would be 220,500 J
Hope this helps!